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Abstract. Protein folding is a very difficult global optimization problem. Furthermore it is coupled
with the difficult task of designing a reliable force field with which one has to search for the global
minimum. A summary of a series of optimization methods developed and applied to various problems
involving polypeptide chains is described in this paper. With recent developments, a computational
treatment of the folding of globular proteins of up to 140 residues is shown to be tractable.
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1. Introduction

The computation of the three-dimensional structures of globular proteins involves
two major problems: the acquisition of a reliable potential energy function, and
an adequate procedure to search the conformational space to identify the global
minimum of the potential energy among the myriad of local energy minima (the
multiple-minima problem) and the nearby low-lying energy minima. This paper is
concerned only with the latter question, the attempts to circumvent the multiple-
minima problem, and will deal only with methods that we have developed for this
purpose. A discussion of other global optimization methods has been presented
recently by Wales & Scheraga [1].

2. Methodologies

In applications to global optimization of biological macromolecules, we consider
those methods that involve only optimization of the potential energy of the system,
without making use of ancillary aids such as secondary-structure prediction, homo-
logy modeling, use of fragments from a protein-structure database, etc. The meth-
ods described below work well with small peptides and fibrous proteins, but only a
few of them, at the present stage of development, seem applicable to large systems
such as globular proteins. In most of this work, the potential energy was adop-
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ted from the Empirical Conformational Energy Program for Peptides (ECEPP [2],
ECEPP/2 [3, 4], or ECEPP/3 [5]), augmented recently by UNRES, a united-residue
representation [6–10].

2.1. THE BUILD-UP PROCEDURE

Since an exhaustive enumeration of all possible conformations, i.e., asystematic
search, is not feasible for proteins or even oligopeptides with more than 5 residues,
the build-up procedure was developed [11–16]. This method carries out atrun-
catedsearch, relying on the dominance of short-range interactions. Thus, it finds
local minima of short fragments by an exhaustive energy-minimization procedure,
and then combines these short fragments into longer ones and, again, minimizes
the energies of the longer fragments. Then, a selection of the minima is carried
out, keeping those that lie within an appropriately chosen upper bound (the cutoff
energy) of the lowest-energy fragment. Subsequently, the limited set of minima of
one fragment is combined with the set of another fragment to form larger peptides
which are also subjected to energy-minimization. As the fragments grow in size,
more of the long-range interactions are taken into account. This process is repeated
until the whole chain is eventually built up from its constituent parts.

2.1.1. Summary of the procedure

1– A single amino acid residue is the smallest fragment used by the build-up pro-
cedure to construct a polypeptide conformation. Vásquez et al. [17] reported
the ECEPP/2 minimum-energy conformations of terminally-blocked single
residues. These conformations were ordered by increasing energy using a
cutoff energy of 5 kcal/mol, and were classified according to the code defined
by Zimmerman et al. [18]. The ECEPP/3 force field leads to the same energy
minima for all blocked amino acids with the exception of the proline and
hydroxyproline residues.

2– Given a molecule withn residues, the conformations ofn− 1 dipeptides
are generated from the single-residue data. After energy-minimization, the
dipeptides are sorted and are subsequently used to construct tripeptides.

3– Generation of larger fragments of the polypeptide chain involves joining two
fragments with one or more residues in common, e.g., tetrapeptides can be
constructed from two tripeptides having two residues in common. This pro-
cess is repeated until the whole polypeptide chain is built.

2.1.2. Difficulties

The fact that the number of conformations of fragments that must be energy-
minimized and stored at each step increases exponentially constitutes a major draw-
back of the build-up procedure. Aside from using an energy cut-off, a partial solu-
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tion to this problem is to retain only those minima whose backbone conformations
differ significantly. This approach considerably reduces the number of conforma-
tions to be stored at each stage of the procedure; however, it may lead to problems
at later stages because the side-chain rotamers that are most favorable energetically
in smaller fragments are not necessarily favored in the whole polypeptide chain.

2.1.3. Applications

This procedure has been used to treat open-chain [13, 15, 19, 20] and cyclic pep-
tides [21, 22] and fibrous proteins such as collagen [23–25]. Except for fibrous
proteins, where advantage is taken of symmetry relations, the method becomes
unmanageable for polypeptide chains containing more than about 20 amino acid
residues.

2.2. THE SELF CONSISTENT ELECTROSTATIC FIELD METHOD

Based on a large amount of experimental evidence [26–31], Piela & Scheraga [32]
postulated that the native conformation of a protein arises when the electrostatic
interactions are near optimal, e.g., they proposed that the peptide group dipoles
in the native conformation must have approximately optimal orientations in the
electric field generated by the whole molecule and its surrounding solvent. Based
on this idea, a conformational search method, named the Self-Consistent Electric
Field (SCEF) method was developed. The SCEF procedure was implemented as
follows:

1– Starting from an arbitrary conformation of the molecule, minimize the total
(e.g., ECEPP/3) conformational energy until the nearest local minimum is
reached.

2– For this conformation, calculate theelectric fielddue to the whole molecule
at each CO and NH group of the peptide units, and also in the center of the
C′-N peptide bond.

3– Determine the direction of the electric field with respect to the CO and NH
bond dipole moments for all peptide groups, and generatediagnostic rota-
tions. A diagnostic rotationcorresponds to the variation that must be applied
to a given torsional angle to obtain the best alignment of the peptide-unit
dipole with respect to the local electric field. The electrostatic analysis points
specifically to the worst orienteddipole momentof the peptide groups (e.g.,
the group between residuesi and i + 1). The diagnostic rotation then de-
scribes a change of the corresponding backbone dihedral anglesψi andφi+1

required to align the dipole moment of the unit.
4– Carry out the diagnostic rotation.
5– Use the new conformation of the molecule as the starting point in step 1:

– if a newlocal minimum is reached, thenrepeatthe procedure from step 2
for the new local minimum;
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– if the samelocal minimum is encountered, thenrepeat step 3, but use the
diagnostic rotation for the next worst-oriented dipole.

6– Steps 1–5 are repeated in a self-consistent manner until further application of
the procedure does not change the conformation of the molecule.

2.2.1. Applications

The procedure was tested on a 19-residue poly(L-alanine) chain [32] with acetyl-
and N-methyl amide terminal blocking groups. The starting conformations were a
series of partiallyα-helical conformations representing different degrees of distor-
tion from the canonical right-handedα-helix. The right-handedα-helical conform-
ation corresponds to the global energy minimum of the ECEPP/2 (and ECEPP/3)
potential function. In the four cases reported, the procedure was able to achieve
the conformation corresponding to the global energy minimum in a very short
computation time. The SCEF procedure was also used [33] in a restrictive search
of the conformational space of the 58-residue protein bovine pancreatic trypsin
inhibitor (BPTI). In this application, the algorithm led to a series of conformations
with up to 50 kcal/mol lower than the starting conformation.

2.3. THE MONTE CARLO-MINIMIZATION METHOD

The fact that proteins are not static structures but instead undergo fluctuations
was the main motivation for the development of the Monte Carlo-Minimization
(MCM) method [34, 35]. The MCM method is astochastic approach[36] for
global optimizationof polypeptides and proteins that combines the strength of the
Metropolis Monte Carlo method [37] in globalcombinatorial optimizationwith
that of conventionalenergy minimizationto find local minima. Even though the
Metropolis Monte Carlo methodcan simulate the thermal processes, straightfor-
ward applications of the method to polypeptides were proven to be quite inefficient
[38–40]. The main reasons for the lack of success are (a) that only small increments
of the variables in each step can be used to sample a very complex conformational
space, and (b) that large energy barriers tend to confine the sampling within a very
restrictive region of the conformational space. To overcome these difficulties, the
MCM method includes conventional energy minimization as a second important
feature. Thus, the MCM method generates a Markov walk on the hyper-lattice of
all discrete energy minima, with Boltzmann transition probabilities.

2.3.1. Summary of the procedure

The MCM procedure is implemented as follows:

1– Given an energy-minimized conformation,Cmincurr, with total energyEmincurr, a
sampling strategy is used to generate a perturbed conformationCpert. This
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Monte Carlo sampling strategy consists of random changes, involvingk di-
hedral angles of the total numberNdieh used to describe the molecule. These
changes are generated with probabilities 2−k (k = 1,2, ..., Ndieh). This se-
lection of probabilities implies that fluctuations involving more degrees of
freedom are sampled with successively lower probabilities. Since any local
minimum is accessible from any other one after a finite number of random
sampling steps, this sampling strategy satisfies ergodicity requirements.

2– The conformationCpert is then subjected to conventional minimization of
its potential energy until it reaches the nearest local minimum. The energy-
minimization process is carried out with the Secant Unconstrained Minimiz-
ation Solver (SUMSL) algorithm [41]. The resulting conformation,Cminpert, has
a total energyEminpert and is, in general, free of atomic overlaps.

3– The Metropolis criterion is used to decide which conformation,Cminpert orCmincurr,
is to be kept. The following criterion is used for acceptance: if the energy
difference1E = Eminpert −Emincurr < 0, or (when1E > 0 ) if e−1E/RT is greater
than a randomly generated number between 0 and 1, the new conformation,
Cminpert replaces the currentCmincurr; otherwise,Cminpert is discarded.

2.3.2. Applications

The MCM procedure was applied successfully to study the conformational prefer-
ences of the pentapeptide Met-enkephalin [34, 35].

2.4. THE ELECTROSTATICALLY DRIVEN MONTE CARLO METHOD

The Electrostatically Driven Monte Carlo (EDMC) method [42–44] is also an it-
erative procedure for searching the conformational hypersurface of polypeptides
consisting of up to 20 amino acid residues. The EDMC method incorporates the
best features of the SCEF and MCM methods and combines them with a set of
new techniques that leads to a more efficient search of the conformational space.

The search for the global energy minimum of a molecule proceeds as a ‘quasi-
random walk’ along a conformational pathway. The pathway followed by the
EDMC method is defined by a sequence of energy-minimized conformations en-
countered over an unbounded number of iterative steps of the algorithm. In prac-
tice, however, the number of iterations is finite and is specified by the user at the
beginning of the simulation. The underlying assumption behind the EDMC method
is that (a) the electrostatic interactions and (b) thermal fluctuations, both compete
in determining the conformation of the polypeptide chain. The electrostatic inter-
actions should lead to conformations representing an improvement of the charge
distribution, i.e., the new conformations are expected to have lower electrostatic
and total energies; while the thermal fluctuations, on the other hand, introduce
disorder within the molecule. These thermal effects could force the molecule to
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adopt higher-energy conformations, but may allow the protein to escape from stable
local minima of relatively high energy.

The implementation of these ideas is accomplished as follows: Thermal effects
are associated with random changes in the molecular conformation, i.e., a small
set of randomly-chosen variables is altered randomly. The reordering effect of the
electrostatic interactions is viewed, as in the SCEF method, as a tendency of all
permanent dipole moments of the polypeptide to attain their best possible align-
ment in the local electric field produced by the rest of the molecule. In addition,
a series of new features [44] has been included in the latest implementation of the
EDMC method that accelerates the search and optimizes the process of generation
of new conformations.

2.4.1. The procedure

An unfolded state of the polypeptide chain, in which the initial values of the vari-
ables describing the molecular conformation are assigned randomly, is usually the
first accepted conformation on the conformational pathway followed by the EDMC
method. The energy of this conformation is minimized to relieve all possible atomic
overlaps. The subsequent accepted conformations are obtained through a series of
iterations using a variety of techniques described below. Aniteration of the pro-
cedure is defined as a set of manipulations of the currently accepted conformation
that leads to itsreplacementby a newly generated conformation.

a) An electrostatic analysis similar to that produced by the SCEF method [32],
but extended to consider the permanent dipole moments of polar side-chains,
is one of the techniques that the EDMC method uses to generate new con-
formations. As the first step of an iteration, an electrostatic analysis of the
currently accepted conformation is carried out. This analysis is used to de-
termine the alignment of the permanent dipoles with the local electric field
produced by the whole molecule. As a result, a series ofdiagnostic rota-
tions that could improve the local dipole alignments with the electric field
are produced. The diagnostic rotations are incorporated into aprediction list
of possible conformational changes and used in subsequent steps within the
iteration to generate new conformations.

b) Since none of these predictions may lead to an acceptable conformation, a
random and/or biased sampling technique is also used to generate additional
conformations. The following procedure is used:
1. Specification of the mode in which the variable dihedral angles of the

selected residuesare to be altered:
(i) Select all variables at random;
(ii) Select the backbone variables randomly within specific regions of the

φ-ψ map;
(iii) Select all variables from pre-computed low-energy conformations of

the tripeptides included in the sequence;
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(iv) Select backbone variables compatible with regular structures (β-sheets
or α-helices).

2. Random selection of (i) the number of residues to be affected by the
changes, and (ii) their positions in the sequence.

The latest implementation of the EDMC method [44] includes a technique to pro-
duce acluster analysisof the conformations. Conformations corresponding to the
accepted minima are grouped into clusters using rmsd (root-mean-square devi-
ation) criteria and ranked on the basis of their total energies. In addition, every
generated conformation, even if rejected, is associated with an existing cluster or
family, but added to it only if its energy is lower than the one corresponding to
the best member of that family. The low-energy conformations included in any
of the clusters (with the exception of the cluster containing the current accepted
minima) can be used within an iteration to generate conformations randomly, using
the protocol described in item (b) above.

Conformations generated by any of these two procedures (a or b) are subjected
to minimization of the total energy. A newly generated conformation must fulfill
two criteria to be accepted:

1. Any generated conformation corresponding to an already accepted minimum
that has been encountered more than a pre-defined number of times (usually
5–10) is automatically excluded from further consideration. This analysis of
the long–term behavior of the search constitutes one of the criteria to en-
sure that the search does not become trapped in a set of local minima of the
conformational space.

2. When a conformation satisfies the condition stipulated above, its energyEnew

is compared with the energy,Ecurr, of the current accepted conformation, and
the Metropolis criterion [37], as described for the MCM method, is applied.

If the energy of the new conformation satisfies both tests, the conformation is
accepted, replacing the current one, and a new iteration begins.

2.4.2. Backtrack

Within an iteration, it may happen that neither the set of electrostatic predictions,
nor the set of randomly generated conformations (usually 100 to 200 conform-
ations) produces an acceptable conformation. Under these circumstances, the al-
gorithm assumes that the current local minimum is quite stable and a new proced-
ure namedbacktrack is triggered. The backtrack procedure attempts to displace
the search to a different region of the conformational hypersurface by altering the
processes of generation and acceptance of conformations in a substantial manner.

The backtrack procedure involves the following:
a) A new set of conformations is generated by changing a large number of vari-

ables simultaneously. In particular, the procedure tends to select the variables
associated mainly with the backbone of the polypeptide chain; and,
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b) the temperature parameter, T, used on the acceptance test is raised either (i)
abruptly to a very high value, or (ii) steadily increased by means of a pre-defined
heating scheme.

The backtrack procedure proceeds until the acceptance test is satisfied, or until
the number of generated conformations reaches a predetermined value. In the first
case, the temperature parameter is reset to its original user-specified value, and the
generation mechanism is switched back to the standard protocol described above.
If the latter situation occurs, the run is terminated based on the assumption that it
is practically impossible to escape from the current region of the conformational
space.

It should be noted that raising the temperature during backtrack has the effect
of increasing the probability of acceptance of conformations with energies much
higher than the current local minimum. The backtrack mechanism has been shown
to be an effective technique to help the search avoid being trapped in stable, high-
energy regions of the conformational space.

2.4.3. Applications

The multiple-minima problem has been found to be computationally surmountable
by the EDMC method on existing computers for polypeptides sequences consisting
of up to 20 amino acid residues.

In applications to Met-enkephalin [43], oxytocin [45], arginine-vasopressin [45],
decaglycine [46], a 19-residue chain of poly(L-alanine) [42], and the 20-residue
membrane-bound portion of melittin [44], the EDMC algorithm has converged to
unique conformations presumed to be the global energy minima for those particular
sequences.

In other applications, to a seven-residue peptide epitope [47], and a twelve-
residue analogue of mastoparan and mastoparan X [48], the method identified very
low-energy conformations, but it is not certain that the global energy minima were
attained in these cases.

The EDMC method has also been applied to explore the conformational space
of larger molecules; however, these searches were restricted to regions of the con-
formational space close to the native conformations. In an application to the 58-
residue protein BPTI [33], the algorithm produced the lowest energy conform-
ation known for BPTI using the ECEPP/2 or ECEPP/3 potential. Recently, the
EDMC method has also been used to search the conformational properties of a
non-oncogenic p21 protein [49] and a molecular switch designed as a biological
logic gate [50].

Recently, the method has also been used quite successfully to study the variation
of the conformational properties of a series of oligo- and polypeptides with pH
[51–53].
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2.5. THE SELF-CONSISTENT MULTITORSIONAL FIELD(SCMTF) METHOD

The SCMTF method [54–56] is based on the fact that the ground-state solution
of the Schrödinger equation gives information about the location of the global
minimum of a potential function, even for a potential with a very complex struc-
ture, i.e., the maximum of the square of the ground-state wave function is very
often close to the global minimum. Since it is not possible to solve the many-
body Schrödinger equation exactly, the mean field approximation is used. The
Schrödinger equation for the motion of the nuclei is given by

Ĥ9 = E9, (1)

where the Hamiltonian operator̂H is defined by

Ĥ = −
M∑
n=1

h̄2

2mn
1n + V̂ , (2)

where1n is the Laplacian operator and̂V is the potential energy operator. Bond
lengths and bond angles are kept fixed, so the configurational space is defined by
the dihedral anglesθ = (θ1, . . . , θN). In order to solve the Schrödinger equation
in dihedral angle space, the Hamiltonian from Equation 1 must be transformed
appropriately. Assuming that the Hamiltonian may be approximated by diagonal
terms only, the resulting operator in torsional space is given by

Ĥmod= −
N∑
i=1

h̄2

2Ii

∂2

∂θ2
i

+ V̂ , (3)

whereIi is an averaged moment of inertia. The solution may be approximated by
the Hartree-like product of the normalized one-angle wave functionsφi(θi) leading
to a set ofN coupled one-dimensional equations

Ĥiφ
ki
i = εkii φkii i = 1, . . . , N. (4)

The Hamiltonian for the single dihedral angle is given by

Ĥ = − h̄
2

2Ii

d2

dθ2
i

+ V̂ eff
i (θi), (5)

where the effective potential̂V eff
i (θi) depends on the mean field created by aver-

aging over the other dihedral angles, according to the probability density distribu-
tion |φ0

i |2. The above set of equations (Equation 4) is solved iteratively, until the
probability density distributions converge.

The SCMTF method was tested initially on terminally-blocked alanine [54],
and then successfully applied to oligopeptides: met-enkephalin [54], decaglycine
[55], icosalanine [55], and melittin [56].
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2.6. METHODS BASED ON THE DEFORMATION OF A POTENTIAL FUNCTION

A promising approach to surmount the multiple-minima problem involves methods
based on the deformation of the original rugged energy surface, thereby reducing
the number of minima by orders of magnitude, at best even to a single minimum,
and simplifying the conformational search greatly. Applying a deformation usually
alters locations of all minima; therefore, a procedure for tracking minima between
the highly deformed function and the undeformed one (reversing, or reversal pro-
cedure) must be used. An application of a deformation method may be divided into
two subproblems: (i) designing an effective deformation of the potential function,
and (ii) constructing an appropriate reversing procedure.

2.6.1. The diffusion equation method

The basic idea of the method, introduced by Piela et al. [57], is to deform the
multivariable function that represents the potential energy in such a manner as to
make the shallow wells disappear gradually, while other potential wells grow at
their expense. Under the assumption that the shallower wells will disappear more
easily than the deep wells, it is possible to envision an iterative procedure that,
applied to the potential function, will change its shape, making most of the minima
become shallower until they disappear, while leaving a single absorbing minimum
related to the lowest minimum of the original function. At this point of thedeform-
ation process, a simple local minimization algorithm should be able to retrieve
the position of the unique minimum from any starting point. However, since the
deformation of the potential should likely have altered the location of all minima,
the global minimum of the original function is not the same as the minimum of the
deformed surface. Its location can, in principle, be attained by slowly reversing the
deformation and using standard local minimization procedures. Piela et al. showed
that the deformation of the hypersurface can be carried out with the aid of the
diffusion equation. In this context, the original shape of the potential function has
the meaning of an initial concentration (or temperature) distribution.

Transformation operator.In order to show the basic features of the method, it is
worth considering a simple example with a one-dimensional function. Given a
functionf (x), one may define a transformation by adding its second derivative:

f [1](x) = f (x)+ βf ′′(x) forβ > 0. (6)

The transformation of Equation (6) destabilizes any potential well off(x) by
decreasing its depth, i.e., the inflection points off (x) do not undergo any change,
since they correspond tof ′′ = 0, while the regions of the curve where the func-
tion is convex or concave will be shifted upward or downward, respectively. For
small values of the positive constantβ, the net effect of this transformation is that
existing extrema of the curve are destabilized. The procedure may be repeated for
the new curvef [1](x) leading to a new transformation. If this procedure is applied
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iteratively, we obtain for theN-th iteration

f [N](x) =
[
1+ t

N

d2

dx2

]N
f (x); for β > 0, (7)

whereβ has been replaced byt/N, with t > 0 being a parameter. The destabilization
of the surface is most effective whenN tends to infinity. Under this assumption,
Equation (7) can be transformed into:

F(x, t) = lim
N→∞

(
1+ t

N

d2

dx2

)N
f (x)

= exp
(
t
d2

dx2

)
f (x)

= T (t)f (x), (8)

whereT (t) is defined as:

T (t) =exp

(
t
d2

dx2

)
=1+ t d

2

dx2
+ 1

2!
(
t
d2

dx2

)2

+ ...+ 1

k!
(
t
d2

dx2

)k
+ ..., (9)

where a Taylor series representation of the exponential operator exp
(
t d

2

dx2

)
was

used in Equation (9). The operatorT (t) has some useful properties. First, it is
linear and its eigenfunctions are sinωx and cosωx, ω being a real constant:

T (t) sinωx = a(ω, t) sinωx (10)

T (t) cosωx = a(ω, t)cosωx (11)

where the eigenvaluesa(ω, t) are expressed as

a(ω, t) = exp
(−ω2t

)
. (12)

Because of the factora(ω, t), the operatorT (t) has the property of flattening
sines and cosines. The flattening effect is more pronounced for high-frequencies,
i.e., functions with largeω’s. Thus, high-frequency components off (x)will vanish
first when the operatorT (t) is applied, and the new functionT (t)f (x) is usually
left with many fewer minima.

Diffusion equation.When the Taylor series given in Equation (9) converges, its
sum is a solution of the diffusion or heat conduction equation:

∂2F

∂x2
= ∂F

∂t
(13)
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where the variablet represents time. Additionally, Equation (13) is solved with the
initial conditionF(x,0) = f (x). The functionF usually represents a concentra-
tion or a temperature distribution. If the functionf (x) is bounded, a solution of
Equation (13) exists for any positive value oft . The procedure described above
represents a spontaneous mass transport (or flow of heat) in a medium for an initial
distribution of concentration (or temperature) given by the functionf (x) (which in
our case represents the conformational energy). Governed by the diffusion equa-
tion and independent of the initial conditions, the concentration (or temperature),
will evolve with time in such a manner that it will become constant fort = ∞.
However, it is expected that the concentration (or temperature) will exhibit a single
minimum for certain (very large) finite values oft . This single minimum should
represent the last trace of the potential well corresponding to the global minimum
of the original hypersurfacef (x).

2.6.1.1. Extension of the procedure to higher dimensions.This deformation pro-
cedure can be extended to higher dimensions. By analogy with Equation (6), in
the case of ann dimensional space, the functionf (x) (with x= [x1, x2, . . . , xn]) is
destabilized by adding the trace of the Hessian. For then-dimensional case, the
operator T(t), appearing in Equation (8), is replaced by

T (t) = T1(t) T2(t) . . . Tn(t) (14)

with

Ti(t) = exp

(
t
∂2

∂x2
i

)
. (15)

The operatorTi(t) has the property

Ti(t)f (xj ) = f (xj ) for j 6= i . (16)

The functionF(x, t) appearing in Equation (8) also satisfies the diffusion equa-
tion for the multidimensional case

1F = ∂F

∂t
(17)

where the operator∂2/∂x2 in Equation (13) has been replaced by the Laplacian:

1 =
n∑
i=1

∂2

∂x2
i

. (18)
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2.6.2. The Distance Scaling Method (DSM)

The DSM [58, 59] is another procedure to deform the potential energy hypersur-
face. Instead of solving the diffusion equation, the deformation is carried out by
scaling the distance variables in the potential energy function. In the DSM method,
the site-site distancerij is transformed as follows:

r̃ij (t) = rij + tr◦,ij
1+ bt (19)

The parameterr◦,ij in Equation (19) has the meaning of the position of the
minimum in the pairwise-interaction term under consideration. On increasingt ,
the original function is flattened, but the position of its minimum and the function
value at the minimum remain the same, if a value of the parameterb is taken as 1
(as in the original formulation of the DSM). The parameterb controls the position
of the minimum and remains constant during the calculations. If the parameterb

is greater than 1, this means that the position of the minimum of the deformed
site-site function will shift to larger values while, forb < 1, it will shift towards
zero, and a two-body potential will become purely attractive fort = 1/(1− b).
For the parameterb = 0, the deformation becomes especially simple; the original
two-body function is shifted toward the origin of the coordinate system (Shift
Method (SM) [58]). It is relatively easy to chooser◦,ij , if there is a minimum.
However, there are two-body functions (e.g., for electrostatic interactions) that are
monotonic. In this case, it is reasonable to chooser◦,ij so large that the function
value at this point is close to zero; thus, this energy contribution will effectively be
eliminated for large deformation.

The potential energy functionF(x) is deformed by applying the transformed
site-site distance to all its two-body components:

F(x, t) =
∑
i,j

uij [r̃ij (t)] (20)

whereuij is a two-body potential function. The two-body components of the poten-
tial function are flattened and, therefore, barriers between different basins of local
minima of the potential functionF(x, t) gradually disappear (whilet increases),
resulting in merging minima and a decrease in their number.

2.6.3. Reversing procedure

As mentioned earlier, the positions of minima of the deformed functionF(x, t0)
are, in general, different from those of the original functionf . Furthermore, the
position of a single minimum ofF(x, t0), cannot generally be used as a starting
point in a minimization off (x), since it will probably lead to a local minimum not
related to the starting one. Consequently, a reversing procedure must be used to
retrieve the relations between minima of the deformed and undeformed functions.
The simplest version of this procedure consists of a series of local minimizations
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carried out on gradually less deformed surfaces, where the starting point on the
less deformed surfaceF(x, t −1t) (where1t is a small deformation interval) is a
result of local minimization onF(x, t).

It was hoped that tracking the lowest-energy minimum obtained with the max-
imally deformed energy surface back to the original energy surface would locate
the global minimum of the original energy function [57] (single trajectory ap-
proach). The main advantage in this case is that the method is completely de-
terministic. However, this approach works only for relatively simple systems; in
more complex cases, the global minimum in the original energy surface is rep-
resented as a higher-energy minimum in the deformed energy surface andvice
versa. Moreover, during the reversal of the deformation, a single trajectory often
branches, forcing the algorithm to track only one possibility (tracking all of them
is effectively impossible because of the exponential growth of the number of tra-
jectories as the reversal progresses). This problem also remains when amultiple
trajectory approach is used, in which all minima in the deformed energy surface
are traced back to the original energy surface. An attempt to alleviate this problem
is themultiple trajectory perturbation approach (MTPA). In this approach, each
structure encountered at a particular reversal step of the deformation is perturbed
and then energy-minimized, and a pre-defined number of lowest-energy structures
is taken to the next step of the reversal; the addition of this perturbation step
alleviates the problem of splitting the trajectories as the deformation decreases.
This approach is by far more successful than the single or multiple-trajectory ap-
proaches and was applied in the theoretical prediction of crystal structures [60, 61].
However, it does not work for highly demanding applications, such as very large
Lennard-Jones clusters or large polypeptide chains.

The most recent approach to global optimization, using the idea of potential
function deformation, is the utilization of a local search with self-consistent map-
ping of the deformed and undeformed minima (Self-Consisted Basin-to-Deformed-
Basin Mapping, SCBDBM) [62, 63]. The underlying principle is the location of
large regions of conformational space containing low-energy minima by coupling
them to some of the greatly reduced number of minima on the highly deformed
surface. The whole procedure consists of macro-iterations, in which the parametert

controls the deformation changes between two extreme values,tmax andtmin (t = 0
corresponds to the original energy surface). The first macroiteration is initialized
with randomly-generated conformations, while the next macroiterations are fed
with the results of the previous ones. Each macroiteration consists of the following
steps: (i) reversal of the deformation fromtmax to tmin; the reversal is accompanied
by carrying out a limited search in the neighborhood of the minima at each stage
of the reversal; (ii) collection of the new low-energy minima in thetmin-deformed
energy surface; (iii) tracking the images of these minima while increasing the de-
formation, up totmax . Steps (i)–(iii) are iterated, until no new minima are found or
a pre-defined number of iterations is exceeded. In the initial macroiteration,tmin is
greater than 0 andtmax is chosen so that the deformed energy surface has only a
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few minima. In each next macroiteration, the newtmax is set attmin of the previous
macroiteration andtmin is decreased, to reach 0 in the last macroiteration.

2.6.4. Applications

The DEM with a single trajectory reversing procedure has been applied to:

• Clusters of Lennard-Jones atoms with 8–19, 33 and 55 atoms in a cluster; the
global minimum was found for all of them (except 8, 9 and 12) [64].

• Water clusters [65].
• A single terminally blocked alanine [66].
• The pentapeptide Met-enkephalin [66] for which the method led to practically

the same global-minimum backbone structure obtained by other methods. The
test, however, was carried out under more restrictive conditions since only the
backbone dihedral anglesφ andψ were considered as variables.

The simplified version of the DSM (SM) has been applied successfully with a
single trajectory reversing procedure to small Lennard-Jones atomic clusters [58]
and water clusters [67]. The DSM coupled with molecular dynamics as a searching
tool and a multi-trajectory reversing procedure has been applied to Lennard-Jones
clusters containing up to 66 atoms, and was able to locate the non-icosahedral
global minimum for LJ38 [59].

The DEM and the DSM have also been applied to predict crystal structures
without making use of ancillary information such as the space group. The multi-
trajectory reversing procedure with perturbations was used in this case. The DEM
and DSM were used to predict the crystal structure of the rigid, nonpolar molecule,
hexasulfur, with a Lennard-Jones interaction potential, and that of the rigid, polar
molecule, benzene [60, 61]. Fixing only the molecular geometry and the interaction
potential, the unit cell dimensions, space groups and the number of molecules in
the unit cell were all computed, and the experimental crystal structures were loc-
ated successfully. For benzene, the calculation succeeded even when the number
of molecules in the unit cell was allowed to be twice the experimental value, which
made the global optimization problem considerably harder.

The SCBDBM method has been applied to united-residue polyalanine chains
with a length of up to 100 residues and to locate the currently known lowest-energy
conformation of staphylococcal protein A [62]. So far, it has successfully located
very low energy structures of polyalanine chains, predicting that the most stable
structure is a straightα-helix up to 70 residues. For 70–80 residues the most stable
form is bent in the middle of theα-helix and, from 80 residues upward, the most
stable structure is a three-helix bundle. For Protein A, a minimum very close to the
experimental structure has been located. In another application, the SCBDBM has
also been able to locate global minima for Lennard-Jones clusters of sizes up to
100 atoms, except those consisting of 75–78 atoms [63].
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2.7. THE CONFORMATIONAL SPACE ANNEALING(CSA) METHOD

The CSA method [68–70] combines essential aspects of the build-up procedure and
a genetic algorithm. The CSA method searches the whole conformational space in
its early stages and then narrows the search to smaller regions with low energy
as the distance cut-off,Dcut, which defines the similarity of two conformations, is
reduced. The distance between conformationsi andj , Dij , is defined in terms of
the differences between all variable dihedral angles that define the geometry of the
polypeptides [68–70]. A flow chart of the CSA algorithm is presented in Figure 1.
As in genetic algorithms [71], CSA starts with a pre-assigned number (usually
50) of randomly generated and subsequently energy-minimized conformations.
This pool of conformations is called thebank. At the beginning, the bank is a
sparse representation of the entire conformational space. A number of dissimilar
conformations (usually 20) are then selected from the bank, excluding those that
have already been used; they are calledseeds. Each seed conformation is modified
by changing from one to one-third of the total number of variables pertaining to
a contiguous portion of the chain; the new variables are selected from one of the
remaining bank conformations, rather than being picked at random. Each conform-
ation is energy minimized to give a trial conformation. Thirty trial conformations
are generated for each seed (a total of 600 conformations). This is the most time-
consuming part of the computation, but it is highly suitable for parallel computing
[70]. For each trial conformation,α, the closest conformationA from the bank (in
terms of distanceDαA) is determined. IfDαA < Dcut (Dcut being the current cut-off
criterion),α is considered similar toA; in this caseα replacesA in the bank, if it is
also lower in energy. Ifα is not similar toA, but its energy is lower than that of the
highest-energy conformation in the bank,B, α replacesB. If neither of the above
conditions holds,α is rejected. The narrowing of the search is accomplished by
settingDcut to a large value initially (usually one-half of the average pair distance
in the bank) and gradually reducing it as the search progresses. Special attention
is paid to selecting seeds that are far from each other in conformational space.
One round of the procedure is completed when there is no seed to select (i.e., all
conformations from the bank have already been used). The round is repeated a pre-
determined number of times. The greatest advantage of the CSA method is that it
always finds distinct families of low-energy conformations.

With the ECEPP/3 all-atom force field, the CSA method has been success-
ful in obtaining the global minimum of peptides containing up to 20 amino acid
residues with 113 variable dihedral angles [68–70]. The average wall clock time
to find the global minimum of a polypeptide with 20 amino acid residues, based
on twenty-four independent runs, was about 4.5 hours with 32 processors of an
IBM SP2 supercomputer. The corresponding wall clock time for a pentapeptide
was 36 seconds with 16 processors [70]. However, an extensive search of the con-
formational space of globular proteins (∼ 100 amino acid residues), represented
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Figure 1. Flow chart of the CSA algorithm.

by an all-atom force field such as ECEPP/3, is out of the question because of the
astronomical computational cost.

Recently, we have developed a united-residue force field, UNRES [6–10], with
which the search of the conformational space of globular proteins (∼ 100 amino
acid residues) is treatable by efficient optimization methods such as CSA. With the
UNRES force field, the CSA method successfully located the native-like conform-
ations of two helical proteins (the 10–55 residue fragment of protein A and the 75
residues of apo calbindin D9K) among the low-energy ones [72]. Alternative struc-
tures (which were mirror images of the native folds) were also found. The global
minimum of a 46-residue fragment of protein A was also identified. The average
wall clock time to find the global minimum based on seven independent runs was
about 14 hours with 32 processors of an IBM SP2 supercomputer. Details of the
implementation of the CSA procedure with the UNRES force field are provided
elsewhere [72]. It should be noted that the structures of protein A or apo calbindin
D9K or the class of fold that they represent were not used in the optimization of
the force field.

The ensemble of conformations of protein A generated by the CSA method have
also been used to investigate the kinetics of the folding transitions to see how these
conformations evolve toward the global minimum. The kinetics of protein folding
were described by a master equation that was described by a Laplace transforma-
tion [73]. The calculations show that native proteins fold fast cooperatively, and that
the global minimum can be reached after a sufficiently long folding time regardless
of the initial state or of the existence of local energy minima. The conformation of
a protein molecule can transform from non-native states to the native state even if
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it originates in different conformational families, as in the case of the mirror-image
family of protein A. Furthermore, it was found that a protein molecule can fold to
its global minimum through different paths from different starting conformations.
A protein molecule adopts a set of conformations, when the folding reaches the
equilibrium distribution, in which the global minimum has the largest probability.
This is the basis for simulating the folding of a native protein by searching for the
global minimum on its potential energy hyper-surface.

2.8. THE HIERARCHICAL APPROACH TO GLOBAL OPTIMIZATION

Whereas the foregoing methods work well with small systems, a new hierarchical
approach [75] has the potential of treating larger systems, e.g., globular proteins.
The hierarchical approach is based on two recent developments, a united-residue
force field, UNRES [6–10] and the CSA method [68–70, 72]. An extensive con-
formational search is carried out with the CSA method using the UNRES force
field.

Once a set of families of low-energy united-residue conformations has been
identified by the CSA method, they are subsequently converted to all-atom chains
in the following steps [7]: (a) positioning of the peptide groups between consec-
utive Cα ’s so as to achieve optimal alignment of the peptide group dipoles (the
dipole-path method) [6]; (b) further optimization of thebackboneconformations
using the Electrostatically-Driven Monte Carlo (EDMC) method [44]; (c) adding
the side chains with partial optimization of their degrees of freedom; (d) final re-
finement of the all-atom chains using the EDMC method and exploration of the
flexible loop regions with the use of the Ḡo-Scheraga algorithm [76, 77]. In the
all-atom calculations, the ECEPP/3 [5] force field with the SRFOPT solvation free
energy contribution [78] is used. The SRFOPT set of parameters seems to work
better [78] than other solvation parameter sets when used in combination with the
ECEPP/3 force field.

The critical step of the algorithm is the global conformational search at the
united-residue level. Because the structures are selected for further stages based on
the energy relations calculated using the united-residue force field, the quality of
this force field is of central importance. We provide here a short description of our
UNRES force field; for details, the reader is referred to the original papers [6–10].

In the UNRES force field, a polypeptide chain is represented by a sequence
of Cα atoms linked by virtual bonds with attached united side chains (SC) and
united peptide groups (p) located in the middle between the consecutive Cα atoms
(Figure 2). All the virtual bond lengths (i.e. Cα–Cα and Cα–SC) are fixed, while the
backbone as well the virtual-bond angles can vary. The free energy of the virtual-
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Figure 2. United-residue representation of a polypeptide chain. The interaction sites are
side-chain centroids of different sizes (SC) and the peptide-bond centers (p) are indicated by
dashed circles, while theα-carbon atoms (small empty circles) are introduced only to assist in
defining the geometry. The virtual Cα–Cα bonds have a fixed length of 3.8 Å, corresponding to
a trans peptide group; the virtual-bond (θ) and dihedral (γ ) angles are variable. Each side chain
is attached to the correspondingα-carbon with a fixed ‘bond length’, bSCi , variable ‘bond
angle’,αSCi , formed by SCi and the bisector of the angle defined by Cα

i−1, Cα
i

, and Cα
i+1, and

with a variable ‘dihedral angle’βSCi of counterclockwise rotation about the bisector, starting
from the right side of the Cα

i−1, Cα
i

, Cα
i+1 frame.

bond chain is expressed by Equation (21).

U =
∑
i<j

USCiSCj +
∑
i 6=j

USCipj + wel
∑
i<j−1

Upipj + wtor
∑
i

Utor(γi)

+ wloc
∑
i

[Ub(θi)+ Urot(αSCi , βSCi )] + wcorrUcorr (21)

The termUSCiSCj consists of the mean free energy of the hydrophobic (hydrophilic)
interactions between the side chains. It, therefore, implicitly contains the contri-
butions arising from the interactions with the solvent. The termsUSCipj denote
the excluded-volume potential of the side-chain – peptide-group interactions. The
peptide-group interaction potential (Upipj ) accounts mainly for the electrostatic
interactions between them or, in other words, for their tendency to form backbone
hydrogen bonds.Utor, Ub, andUrot denote the energies of virtual-dihedral angle
torsions, virtual-angle bending, and side-chain rotamers; these terms reflect the
local propensities of the polypeptide chain. Finally, the multibody (or cooperative)
term Ucorr arises from the fact that details of the all-atom chain are lost when
converting it into the simplified chain. Their functional forms can be derived taking
advantage of the fact that the free energy function of the simplified chain can be ob-
tained by integrating the Boltzmann factor of the energy of the all-atom chain over
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Table 1. Summary of the results for the best-predicted contiguous fragments of the seven
targets submitted to CASP3

Modela No. of aab Fragmentc rmsdd Percentagee

T0056_1 114/114 59 (71–129) 5.8 52

T0061_1 89/76 61 (25–85) 4.2 80

T0073_1 48/48 30 (1–30) 1.0 63

T0074_2 98/95 53 (160–212) 5.8 56

T0076_3 140/139 62 (76–137) 6.8 45

T0079_1 129/116 61 (9–68) 5.9 52

T0084_1 37/30 13 (21–33) 0.9 42

a The last digit indicates the model number of the target. Up to five models were submitted
for each target. The total number of models submitted is 22.
b The numbers correspond to: length of the (entire sequence)/ (experimentally observed).
c The first number indicates the size of the fragment analyzed. In parentheses, the first and last
residues of the fragment are given.
d The calculation of the rmsd (in Å) is carried out by using the positions of the Cα car-
bon atoms of the two fragments at optimal superposition requiring one to one match of
corresponding residues.
e Ratio (in percentage) of residues predicted over those observed in the experimental
structures.

‘less important’ degrees of freedom, given the configuration of the simplified chain
[10]. Thew’s denote relative weights of the respective energy terms. The force field
was parameterized based on distribution and correlation functions calculated from
protein structures from the PDB or by averaging the all-atom energy functions,
as well as by Z-score optimization (maximizing the ratio of the gap, between the
energy of the native structure and the lowest-energy non-native structure, to the
average energy of the non-native structures).

With this approach, we attempted blind predictions on seven target proteins
provided for the Third Community Wide Experiment on the Critical Assessment
of Techniques for Protein Structure Prediction (CASP3) [79, 80]. The amino acid
sequences of these targets had been volunteered by experimental structural bio-
logists who were in the process of determining their three-dimensional structures
by NMR spectroscopy or X-ray crystallography. The results of the conformational
search carried out with CSA were very promising. The method identified distinct
families of low-energy conformations some of which share a common core (see
Table 1). For target T0061, an 89 amino acid residue-protein (HDEA,E. coli [81],
PDB entry: 1BG8), the structure of the core represents 80% of the experimentally-
observed structure. In this particular case, the rmsd between the crystal and our
prediction was 4.2 Å for the Cα atoms [75, 80].

In addition, large portions (∼ 60 amino acid residues) of the three-dimensional
structures of the target proteins with sizes ranging from 89 to 140 amino acid
residues were predicted correctly. The rmsd’s for the Cα atoms from the experi-
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mental structures ranged from 4.2 to 6.8 Å , demonstrating the robustness of our
approach.

It must be pointed out that our simulations were carried out onisolatedpoly-
peptide chains (with inclusion of solvent effects). Some of the targets that we
predicted exist as complexes or in multimeric forms in the crystals examined by
X-ray diffraction. Our treatment does not include all these possible arrangements.
However, in these cases, the conformational search method has identified famil-
ies of conformations that shared similar features with the experimental structures.
For example, for proteins with two domains, such as targets T0076 and T0079,
our predictions also led to two domains. For T0079, the difference between the
experimental and calculated structures arises mainly from the manner in which the
two domains associate with each other. The experimental structure of T0079 was
determined by X-ray crystallography as a complex with DNA. The DNA molecule
was not included in our simulations. The models that we submitted contain two
domains, as in the experimental structure. However, these domains are packed
tightly together in our models while, in the experimental structure, they bind to
DNA. The computational cost for the largest target (140 amino acid residues) was
less than 150 hours with 64 processors of an IBM SP2 supercomputer.

3. Conclusions and outlook

In this paper, we discussed global optimization methods that were developed and
used in our laboratory to study the protein folding problem. Most of them were
applied to study relatively small polypeptides represented by all-atom models. We
have demonstrated the usefulness of these methods in studying the protein folding
and other hard optimization problems.

The protein folding problem is quite different from other hard optimization
problems such as the traveling salesman problem, where the cost function to be
optimized is well-defined. In protein folding, the energy function is not provided
in an exact form, and an approximate energy function is used. Therefore, finding
the global minimum of a given energy function does not necessarily solve the
protein folding problem unless the function is accurate enough. However, without
efficient search methods, one can never be sure if the solution for a given potential
function is really the global minimum. This means that the acquisition of a reliable
optimization method is the only way to approach the protein folding problem. A
powerful optimization method is a tool that will allow us to judge and improve the
performance of a given force field.

In order to treat larger systems in reasonable time, we found it necessary to
reduce the complexity of the protein folding problem by using a united-residue
force field, UNRES. Our results on globular proteins (containing up to 140 amino
acid residues) demonstrate that it is possible to predict a significant portion of
protein structure by using only a potential function and a powerful method of con-
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formational search, without the aid of knowledge-based information provided by
multiple-sequence alignment, secondary-structure prediction, or fold recognition.

There previously were two major obstacles preventing the practical implement-
ation of the energy-based methods: lack of an efficient global optimization method
and insufficient quality of the force fields. As we have shown, the first obstacle
has been largely overcome by the hierarchical approach, whose decisive stage is
the global optimization of the energy of a highly simplified polypeptide chain with
the CSA method, as well as the SCBDBM and other efficient global optimization
methods developed in our laboratory. Secondly, the force fields (e.g., UNRES,
ECEPP) are now being improved systematically by fine-tuning their parameters
with the help of global optimization methods. In conclusion, global optimization
methods are useful tools for surmounting the multiple-minima problem in protein
folding.
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